Life after meiosis: patterning the angiosperm male gametophyte.
نویسندگان
چکیده
Pollen grains represent the highly reduced haploid male gametophyte generation in angiosperms. They play an essential role in plant fertility by generating and delivering twin sperm cells to the embryo sac to undergo double fertilization. The functional specialization of the male gametophyte and double fertilization are considered to be key innovations in the evolutionary success of angiosperms. The haploid nature of the male gametophyte and its highly tractable ontogeny makes it an attractive system to study many fundamental biological processes, such as cell fate determination, cell-cycle progression and gene regulation. The present mini-review encompasses key advances in our understanding of the molecular mechanisms controlling male gametophyte patterning in angiosperms. A brief overview of male gametophyte development is presented, followed by a discussion of the genes required at landmark events of male gametogenesis. The value of the male gametophyte as an experimental system to study the interplay between cell fate determination and cell-cycle progression is also discussed and exemplified with an emerging model outlining the regulatory networks that distinguish the fate of the male germline from its sister vegetative cell. We conclude with a perspective of the impact emerging data will have on future research strategies and how they will develop further our understanding of male gametogenesis and plant development.
منابع مشابه
Female gametophyte development.
Early in their evolution, plants acquired a life cycle that alternates between a multicellular haploid organism, the gametophyte, and a multicellular diploid organism, the sporophyte. Angiosperms have both female and male gametophytes. The female gametophyte is critical to many steps of the angiosperm reproductive process, including pollen tube guidance, fertilization, the induction of seed dev...
متن کاملArabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction.
In flowering plants, diploid sporophytic tissues in ovules and anthers support meiosis and subsequent haploid gametophyte development. These analogous reproductive functions suggest that common mechanisms may regulate ovule and anther development. Two Arabidopsis Auxin Response Factors, ARF6 and ARF8, regulate gynoecium and stamen development in immature flowers. Wild-type pollen grew poorly in...
متن کاملMale and female gametophyte development in Achillea tenuifolia (Asteraceae)
The anther, pollen and ovule development in Achillea tenuifolia were studied with a bright field microscopy. Results showed that the anther is of tetrasporangiate type and the anther wall is composed by four layers: an epidermis, an endothecium, one middle layer and a tapetum layer. Tapetum is of secretory type and its cells showed polyploidy. Pollen tetrads were tetrahedral, microspores were v...
متن کاملFemale gamete competition in an ancient angiosperm lineage.
In Trimenia moorei, an extant member of the ancient angiosperm clade Austrobaileyales, we found a remarkable pattern of female gametophyte (egg-producing structure) development that strikingly resembles that of pollen tubes and their intrasexual competition within the maternal pollen tube transmitting tissues of most flowers. In contrast with most other flowering plants, in Trimenia, multiple f...
متن کاملGenetics of gametophyte biogenesis in Arabidopsis.
The identification of several mutations and genes involved in sporogenesis and gametogenesis has initiated a genetic framework for understanding gametophyte biogenesis. Recent advances include the molecular characterization of genes required for sporocyte formation and meiosis. These studies have revealed some unexpected interactions linking development of sporophytic cells and tissues with ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 38 2 شماره
صفحات -
تاریخ انتشار 2010